High repetition rate SLR at GRSM

ILRS Technical Workshop
Stuttgart 21th – 25th October 2019

C. Courde¹, H. Mariey¹, J. Chabé¹, D-H. Phung¹, J-M. Torre¹, M. Aimar¹, N. Maurice¹, E. Samain², A. Tosi³, M. Buttafava³

¹ Université Côte d'Azur, CNRS, Observatoire de la Cête d'Azur, IRD, Géoazur, 2130 Route de l'Observatoire 06460 CAUSSOLS France

² SigmaWorks, 8 Allée Bellevue 06460 SAINT VALLIER DE THIEY, France

³ Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza

Leonardo da Vinci 32, 20133 Milano, Italy

Why increasing the repetition rate?

Our motivation: 2 colors measurement at the mm level

$$2D = R_{Green} + a (R_{Green} - R_{IR})$$

=>

It requires an high improvement of the time-of-flight measurement on the both wavelength.

Why increasing the repetition rate?

[I. Prochazka, 17th ILRS Workshop, 2011]

SLR ranging precision (Graz 2011)

Limitations:

- Multi corner cubes target
- Timing jitter of SPAD => $\sigma_{single-shot} = 15 ps$
- Atmospherical
 dispersion & spectral
 width of pulses
 => limit the use of
 pulse width between
 5 ps 20 ps

Limitations:

 Atmospherical backscattering & turbulence

One solution in single-photon mode:

Try to increase the repetition rate of the measurements to push the TVAR on the left

What is it necessary to implemented?

High repetition rate picosecond laser => 100 MHz HighQ laser

High repetition rate event timer

We have a sub-picosecond STX 301 event timer (puchased now by SigmaWorks) acquired during the T2L2 mission.

- Time Stability @ 1000s: < 20 fs
- Linearity: 0.3 ps rms.
- Thermal Sensit. < 200 fs/°C
- Repeatability error
 - Synchronous : 600 fs rms
 - Random: 700 fs rms
- Rate
 - Dead time: 130 ns
 - Continuous rate 35 kHz

MDev 1E-15

What is it necessary to implemented?

High repetition rate SPAD

Collaboration in 2014 with And with the help of the

Development of two high repetition rate SPAD detections

Si-SPAD					
Active area diameter	100 μm				
Max repetition rate	1 MHz				
Timing jitter	33 ps FWHM				
DCR @ 7 V	74 Hz				
Quantum efficiency	53% @ 532 nm				

InGaAs-SPAD						
Active area diameter	50 μm					
Max repetition rate	100 kHz					
Timing jitter	76 ps FWHM					
DCR @ 7 V	200 kHz					
Quantum efficiency	47% @ 1064 nm					

Green SPAD @ 1MHz

Clearly not a Normal distribution!

Géo

GÓ3 AZUC

Géo

Skewness = 0.9; Kurtosis = 4.2

Géo Azur

GÉ® AZUC

High repetition rate on a groundground link

PROFIL ALTIMÉTRIQUE

Dénivelé positif : 199,44 m - Dénivelé négatif : -43,55 m Pente movenne : 9 % - Plus forte pente : 28 %

Maybe pb with the laser lock-in on the external clock

Conclusion & Perspectives

- We characterized two high repetition rate SPAD working:
 - at 1 MHz in Green
 - at 100 kHz in IR
- We measured a white noise behaviour for our two detection channels in Lab with:
 - 150 fs @ 0.6 s for the green SPAD
 - 213 fs @ 2s for the IR SPAD
- We will have to confirm that high repetition rate laser ranging allow to see the impact of the atmospherical turbulence on the range measurements
- Lot of works in perspective on all the SLR sub-system !!
- A new laser dedicated for SLR should arrive soon!

Thanks for your attention

Motivation

Currently:

$$2D = R_{Green}$$
 with $R_{Green} = \frac{(t_{return} - tstart).c_0}{n(\lambda, T, Pv, Pa, CO_2)}$

Unknown parameter => uncertainty at the cm level

Motivation

Our objective: 2 colors measurement at the mm level

$$2D = R_{Green} + a (R_{Green} - R_{IR})$$

Correction term => Dispersion effect (due to dry atmosphere)

Improve accuracy in SLR

$$D = \frac{(t_{arrival} - t_{depart}).c}{2}$$

Idea of 2 colors

(K. B. Earnshaw and E. Norman Hernandez, 1972; Abshire, 1980)

Send simultaneously pulses at 2 different wavelengths.

Not used routinely by most of the ILRS stations:

- Technological limits
- Global performances of the same order of index models

Fig. 3. Differential atmospheric delay time for a one-way traversal vs zenith angle for the three possible pulse pairs.

J. B. Abshire, October 1980 / Vol. 19, No. 20 / APPLIED OPTICS

Improve accuracy in SLR

From D. D. Wijaya et Al., Springer Verlag, 2011

- $\mathcal{R}_1 = \int_{p_1}^{\cdot} n(f_1, \overrightarrow{r_1}) ds_1$
- $\mathcal{R}_2 = \int_{p_2}^{\cdot} n(f_2, \overrightarrow{r_2}) ds_2$
- \mathcal{R}_1 & \mathcal{R}_2 contains the same quantities of total atmospheric and water vapor density, the same curvature effects. The unknown integral $\int_{p_1}^{\cdot} \rho_t(\overrightarrow{r_1}) ds_1$ can be rigorously eliminated

2 colors measurement

$$2S = R_1 + \nu(R_1 - R_2) + (\nu P_{21} - \kappa_1) + H_{21}SIWV$$

P21 represents the propagation corrections from the ray path p2 to p1 $\kappa1$ is the arc-to-chord correction for the ray path p1 which accounts for the curvature effect v the power of dispersion H21 the water vapor factor

SIWV the slant integrated water vapor

Improve accuracy in SLR

Dispersion effect (term due to dry atmosphere)
Curvature of optical paths
Water vapor density effect

	En mm	En mm	En mm
E (°)	$\nu(\mathcal{R}_1 - \mathcal{R}_2)$	$(\nu P_{21} - \kappa_1)$	$H_{21} \cdot SIWV$
3	$-36,782.5 \pm 162.2$	-390.1 ± 11.3	30.8 ± 10.4
5	$-25,574.7 \pm 99.8$	-143.2 ± 3.6	19.8 ± 6.8
10	$-14,069.6 \pm 49.9$	-25.2 ± 0.6	10.4 ± 3.5
15	$-9,639.8 \pm 33.4$	-8.2 ± 0.2	7.0 ± 2.4
20	$-7,351.9 \pm 25.3$	-3.4 ± 0.1	5.3 ± 1.8
30	$-5,057.9 \pm 17.3$	-1.0 ± 0.0	3.6 ± 1.2
40	$-3,942.3 \pm 13.4$		2.8 ± 1.0
60	$-2,930.1 \pm 10.0$	<-0.3	2.1 ± 0.7
90	$-2,538.7 \pm 8.6$		1.8 ± 0.6

How to achieve millimetric accuracy in SLR with 2-colors measurements?

Millimeter accuracy possible with a significant precision improvement

Precision to reach at each wavelength

$\begin{array}{c} \lambda_1/\lambda_2 \\ (\mu m) \end{array}$	σ _{R1} (μm)	$\sigma_{\mathcal{R}_2}$ (µm)	σ_{ν} (-)	σ_{κ_1} (mm)	$\sigma_{P_{21}}$ (µm)	$\frac{\sigma_{H_{21}}}{(\text{m}^3\text{kg}^{-1})}$	$\sigma_{\rm SIWV} \ ({\rm kg} \ {\rm m}^{-2})$
0.532/1.0684	47.16	45.03	6.61×10^{-4}	1	45.03	2.89×10^{-6}	7.4017
0.4235/0.847	76.60	71.15	3.80×10^{-4}	1	71.15	3.05×10^{-6}	7.5444

From D. D. Wijaya et al., Springer Verlag, 2011